UNIT-5-ML
Well! Let's get into a brief introduction to artificial neural networks. A neural network is a method that was developed by drawing inspiration from the biological neurons of the human brain, or, as we can describe it, a set of algorithms that helps us recognize or detect patterns and relationships. ANN was first introduced in 1943 by neurophysiologist Warren McCulloch and mathematician Walter Pitts. There are numerous applications of ANN in medical diagnosis, image recognition, speech recognition, machine translation, etc.
Ultimately, ANN consists of three main layers: the input layer, the hidden layer, and the output layer.
Input Layer: takes input along with certain weights and biases.
Hidden Layer: This layer is the heart of the model. In this layer, input taken from the previous layer is processed by various layers. It evaluates the input using the activation function and delivers an output.
Output Layer: The output delivered from the hidden layer was received by the output layer, which displays the final output.
Back propagation: if an error occurs in the output, then the model backtracks to the input layer, updates the weights, and again processes them through the hidden layer to deliver the correct output.
The perceptron is the simplest form of neural network.
In this guide, you can learn how to install TensorFlow, which is an end-to-end open-source platform for deep learning. Using this, you can deploy your own model for your project. Rather than machine learning, deep learning, which is a subset of machine learning, can deal with large and complex datasets by using this type of open-source framework. TensoFlow was developed by the Google Brains team in 2015. It was mainly used for deploying high-end machine learning applications and deep learning applications. Keras is also an open-source library to build machine learning models and deep learning models. Compared to tensorflow keras used for small applications by individual developers, tensorflow consists of inbuilt keras in it to provide flexibility to users and developers.
In loading and preprocessing data with TensorFlow, you can see six major phases: load data,data augmentation, normalization, shuffling of data, splitting into batches, Caching these six phases will help you maintain the data in the correct format.
Load data: In this phase, it deals with how data can be loaded into a model and how it can be partitioned into training, validation, and test data.
Data Augmentation: This phase is nothing but the transforming of data from its original shape to another shape that can be flexible to model to perform the task.
Normalization: In this phase, it can be used to normalize the data, which is transformed in data augmentation using the transform function.
shuffling of data: This method can enhance the prevention of model overfitting by using data that is shuffled every time.
splitting into batches: this can split the dataset into small batches to prevent the overfitting and underfitting of the deep learning model.
Caching is used to declare the memory size of batches at the time of shuffling.
What was covered in the material??
introduction of ANN
classifications of ANN
layers of ANN and backpropagation
MultiLayerPerceptron using Keras
How do I install TensorFlow?
Loading and preprocessing data with TensorFlow's six phases